Enhanced Water Vapor Transmission through Porous Membranes Based on Melt Blending of Polystyrene Sulfonate with Polyethylene Copolymers and Their CNT Nanocomposites
نویسندگان
چکیده
A novel concept for the use of an immiscible and non-meltable polymer, such as sodium polystyrene sulfonate (PSSNa), in order to prepare polyethylene non-woven breathable membranes is described. Membranes were fabricated by melt compounding of properly functionalized PE (P(E-co-AA)) and PSSNa (P(SSNa-co-GMA)) copolymers in the presence of water soluble polyethylene glycol (PEG). The inability of PSSNa derivatives to be melted was overcome by using PEG, which was easily meltable thus inducing PSSNa processability improvement. PEG was removed after membrane fabrication and therefore also acted as a porogen. Carbon nanotubes, functionalized with PSSNa moieties or alkyl groups, were also incorporated in the membranes with the aim of improving the porous connectivity and increasing the water vapor transmission rate. The morphology of the membranes was investigated through Scanning Electron Microscopy (SEM). Water vapor transmission rate (permeation) (WVTR) measurements for the porous membranes showed increased values in comparison with the neat PE ones. A further increase of WVTR was observed with the addition of CNTs to the polymer membranes.
منابع مشابه
Modified CNTs/Nafion composite: The role of sulfonate groups on the performance of prepared proton exchange methanol fuel cell’s membrane
A novel Nafion®-based nanocomposite membrane was synthesized to be applied as direct methanol fuel cells (DMFCs). Carbon nanotubes (CNTs) were coated with a layer of silica and then reacted by chlorosulfonic acid to produce sulfonate-functionalized silicon dioxide coated carbon nanotubes (CNT@SiO2-SO3H). The functionalized CNTs were then introduced to Nafion®, and subsequently, methanol permeab...
متن کاملControlled Dispersion of Carbon Nanotubes Wrapped in Amphiphilic Block Copolymers: Elaboration of Polymer Nanocomposite
In this work, we aim to prepare polymer nanocomposites by the dispersion of multiwall carbon nanotube (MWCNT) in aqueous solution using amphiphilic block copolymers. First, we report our success in wrapping MWCNT with amphiphilic block copolymers in aqueous solution. We selected poly(ethylene oxide) (PEO) as the hydrophilic block because of its strong affinity for water and its easiness synthes...
متن کاملCarbon Nanotube-Reinforced Thermotropic Liquid Crystal Polymer Nanocomposites
This paper focuses on the fabrication via simple melt blending of thermotropic liquid crystal polyester (TLCP) nanocomposites reinforced with a very small quantity of modified carbon nanotube (CNT) and the unique effects of the modified CNT on the physical properties of the nanocomposites. The thermal, mechanical, and rheological properties of modified CNT-reinforced TLCP nanocomposites are hig...
متن کاملPET/Mica nanocomposites for food packaging: Crystallization behavior and mechanical properties
Nowadays polymer nanocomposites have introduced as a new class of food packaging materials due to their enhanced mechanical, thermal, and barrier properties. In this study PET nano composites were prepared by melt blending of poly (ethylene terephthalate) pellets and mica nanoparticles. The morphology of PET/mica nanocomposites was characterized by X-ray diffraction and transmission electron mi...
متن کاملPET/Mica nanocomposites for food packaging: Crystallization behavior and mechanical properties
Nowadays polymer nanocomposites have introduced as a new class of food packaging materials due to their enhanced mechanical, thermal, and barrier properties. In this study PET nano composites were prepared by melt blending of poly (ethylene terephthalate) pellets and mica nanoparticles. The morphology of PET/mica nanocomposites was characterized by X-ray diffraction and transmission electron mi...
متن کامل